
Quantum mechanics as a multidimensional Ermakov theory. I. Time independent systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 535

(http://iopscience.iop.org/0305-4470/17/3/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) 535-546. Printed in Great Britain 

Quantum mechanics as a multidimensional Ermakov 
theory: I. Time independent systems 

Robert A Lee 
CSIRO Division of Chemical Physics, PO Box 160, Clayton Victoria, Australia 3168 

Received 8 August 1983 

Abstract. In this paper we present a multidimensional Ermakov theory applicable to both 
separable and non-separable time independent quantum mechanical systems, the separabil- 
ity of the system being determined by the separability of the wavefunction in configuration 
space. A consequence of the theory is the existence of a new exact invariant for multi- 
dimensional quantum systems. In one dimension we show that this new invariant reduces 
to the well known Ermakov-Lewis invariant. Two applications of the theory are given. 
In the first case a new exact invariant is obtained for planar optical and particle channelling 
systems. In the second case we obtain the Ermakov invariants and electron ray path 
equations for the hydrogen atom. 

1. Introduction 

The simplest Ermakov system and the first one discovered (Ermakov 1880) and 
rediscovered in 1967 (Lewis 1967) is related to the properties of the one-dimensional 
harmonic oscillator with a time dependent frequency 

i +  W 2 ( t ) X  = 0 (1) 

where the dots denote derivatives with respect to t. The Ermakov invariant associated 
with (1) is given by 

z = ( x / p ) 2 + c - 2 [ x i - p i ] 2  (2) 

/ 5 + W 2 ( t ) p - - C 2 / p 3 = 0 .  (3) 

where c is a constant and p ( t )  satisfies the auxiliary equation 

Equations (1)-(3) define an Ermakov system representation of the time dependent 
harmonic oscillator. Lewis and Riesenfeld (1969) have used the invariant given by 
(2) to construct an exact quantum theory of the time dependent harmonic oscillator 
based on the eigenstates of the operator form of I. Stimulated by this work, Hartley 
and Ray have applied the Ermakov technique to the study of more general time 
dependent systems, including the N-dimensional Schrodinger equation (Ray 1982, 
Hartley and Ray 1982a, b, Ray and Hartley 1982). It has also been shown that the 
Feynman propagator can be written in terms of the eigenfunctions of the invariant 1 
(Khandekar and Lawande 1975). Stimulated by the above important applications, 
other workers have considered extensions of Ermakov theory to include nonlinear 
equations of motion (Ray and Reid 1979, 1980, Reid and Ray 1982) and studied the 
relationship between Ermakov invariants and the Lie and Noether symmetries of the 
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equation of motion or corresponding Lagrangian (Lutzky 1978, Leach 1981a, b, Reid 
and Ray 1982). In quantum mechanics an Ermakov system may be established by 
noting the similarities between ( 1 )  and the time independent one-dimensional 
Schrodinger equation. That is, replacing x(?) by V(x),  U ( ? )  by k(x)  and p ( f )  by 
A(x) ,  equations ( l) ,  (2) and (3) become respectively 

\Ir”+ k2( X ) T  = 0 (1’) 

I = (“/A)’+ C-*[VA’-AV’]~ 

A” + k2(  X )  A - c2/ A3 = 0 

where the primes denote derivatives with respect to x and k is the local wavenumber 
given by k2=(2m/h2) (E-  V(x)).  Equation (3’) is known as the Milne equation 
(Milne 1930) and forms part of Milne’s method of quantisation. In Milne’s method 
the general solution of (1’) can be expressed in the form 

ul(x)=NA(x)sin(  c I ’A-2dx-6)  (4) 

where N and 6 are arbitrary constants. The Milne quantisation condition follows from 
the requirement that the wavefunctions be bounded at both ends of the interval 

X 

c I-, A-’ dx = n.ir 

where n is a positive integer, the energy quantum number. The Milne method has 
received a revival of interest in recent years because of its superior numerical stability 
for n >> 1 (Killingbeck 1980, Korsch et a1 1981) and because of its close connection 
with standard WKB theory. The WKB approximation is obtained by neglecting the A” 
term in (3’) and restricting the limits on the integral in ( 5 )  to the classical turning 
points. The close connection between classical Ermakov theory and Milne’s method 
of quantisation discussed above implies that there might exist a common physical 
interpretation which relates classical particle mechanics to quantum wave mechanics. 
We have recently explored this idea in the context of a theory of wave-particle duality 
based on the three-dimensional time independent Schrodinger equation (Lee 1982a) 
and in the relativistic case on the Klein-Gordon equation (Lee 1982d). When this 
theory was applied to the case of optical and particle channelling systems (Lee 1982b, c), 
where the eigenfunctions are separable functions of the longitudinal and transverse 
coordinates, we obtained a description which included an Ermakov system of equations 
of the form of (l’), (2’), (3’). In this case the Ermakov invariant played a bootstrapping 
role in connecting the dual representations of rays and waves. 

The main purpose of this paper is to show that a similar result holds in the general 
case of a 3N-dimensional non-separable quantum system of N particles where an 
Ermakov invariant will be shown to exist which bootstraps configuration space 
wavefunctions to configuration space quantum ray paths. This suggests a physical 
interpretation of the Ermakov invariant in the context of a theory of wave-particle 
duality. 

2. Configuration space quantum ray theory 

Consider a quantum system of N identical particles interacting via a real scalar potential 
V(X) ,  where X is a 3N-dimensional space vector. The time independent states of 
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the system are governed by the following 3N-dimensional Schrodinger equation 

V2? + k2(X)? = 0 (6) 

where V is the 3N-dimensional gradient operator, ?(X) is the configuration space 
wavefunction and k2(X) = ( 2 m / h 2 ) [ E  - V(X)]  where m is the mass of a particle. 

We now write the wavefunction in the form q ( X )  = A(X)  exp(iS(X)/h), substitute 
into (6) and separate real and imaginary parts to obtain the two well known equations 

V2S+2(VA/A) .  V S = O  (7) 

lVS12 = h2k2+h2V2A/A. (8 )  

We now develop the configuration space quantum ray representation by following a 
similar procedure to that employed in the one-particle case (Lee 1982a). 

The ray representation is introduced according to the following prescription 

VS = g(X) d X / d a  (9) 

where g ( X )  is an arbitrary gauge function and d a  is an element of arc length in a 
conformal metric in the configuration space of the N-particle system. We now define 
a point on the ray path in configuration space by X(p )  where p is a continuously 
variable parameter. The derivative of X with respect to p is denoted by X. From 
(8) and (9) we therefore have 

d X / d a  = (O/g)X/ IX(  E (Q/g)x (10) 

where Q2 is given by the RHS of (8) and the vertical bracket denotes the magnitude 
of the vector inside. From the above expressions and (7) we obtain the result 

d[ln(A2Q)l/dp = -[V - x]IXI. (14) 
Finally integrating this expression and using the definition of Q we obtain the nonlinear 
wave equation 

V2A+ k2A- ~ ' K ' A - ~  = O  (15) 
where a is an integration constant and K is the configuration space quantum expansion 
coefficient given by 

K = exp( - Ip  [V x]lXl d p )  

The configuration space quantum ray equation is given by the extremisation of the 
following action integral obtained from (9)-( 15): 

S ( p )  =ah  ( K / A ~ ) ~ X ~  dp. 

Hence the N-particle quantum ray equation is given by 

I' 
(d/dT)[(K/A2) d X / d ~ ]  = V ( K / A ~ )  

where d.r = /XI d p  is an element of the configuration space ray path. 



538 R A Lee 

Equation (18) defines a set of 3 N  coupled ray equations describing the time 
independent interactions in the N-particle quantum system. There are two sources of 
these interparticle interactions: firstly the source due to the potential function V ( X ) .  
In the classical limit where the V2A term in (15) is neglected this interaction is still 
present and (18) reduces to the well known configuration space classical ray equations. 
In the absence of V ( X )  these classical ray equations decouple into a set of 3 N  
independent equations describing the straight line paths of N independent particles. 
However, in the exact quantum mechanical case where the V2A term in (15) is not 
neglected there is another source of interactions between the particles. This purely 
quantum interaction has the effect of causing the ray equations still to  be coupled even 
in the absence of the potential function V ( X ) .  The interesting thing about this quantum 
interaction is that it is independent of the separation between the particles and therefore 
represents the non-locality property of quantum phenomena. In a later paper we hope 
to explore the consequences of this non-local effect in more detail. 

An expression for the gradient of the phase of the configuration space wavefunction 
follows from (9),  (10) and (15): 

VS = a h ( ~ / A ’ ) [ d X / d ~ ] .  (19) 

IVS/2 = C Y ~ ~ ’ K ~ / A ~ .  (20) 

The configuration space quantum eikonal equation is therefore given by 

From the above expressions it can be seen that the N-particle quantum expansion 
coefficient can also be written in the form 

K = exp( -I V . (VS//VSl) dr) .  

From (19) and (21) it can be seen that V - (A2VS) = 0 and therefore, from applying 
Gauss’s theorem to a thin ‘tube’ of rays connecting two wavefronts at T~ and 7, it can 
be seen that the expansion coefficient can be written in the form K (  7) = K (  T ~ )  dZo/dZ = 
K (  ro)J-’[aXi( T)/~X,( T ~ ) ]  where d& and dZ are the ‘areas’ of wavefronts cutting the 
ray ‘tube’ at T~ and 7 and .T[aX,(r)/dx,(~~)] is the Jacobian of the mapping from T~ 

to T. Equations (15)-(21) define the configuration space quantum ray representation 
of the N-particle time independent Schrodinger equation and are a natural generalisa- 
tion of the one-particle case considered in an earlier paper (Lee 1982a). In 0 3 we 
shall show how these equations may be used to define the configuration space quantum 
Ermakov invariant. 

3. The Ermakov invariant 

The main reason for believing in the existence of an Ermakov invariant for N-particle 
systems is that (6) and (15) are just multidimensional equivalents to (1’)  and (3’ )  
respectively. The only difference is that (15) requires for its complete solution the 
solution of a set of generalised ray equations given by (18). 

To find the configuration space equivalent of (2’) consider (17) which can be 
rewritten in the form 

(22) 
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where X o  is an initial point for one particular configuration space quantum ray path 
given by solving (15) and (18) for X = X ( X o ,  7) .  

Two linearly independent solutions of (6) are now given in the ray representation 
by 

where A ( X o ,  T )  = A ( X ( X o ,  7 ) ) .  The solutions 'PI and V2 obviously satisfy the following 
Wronskian relation 

q1(d*2/dr) -q2(dq1/d.r)  = a ~ .  (25) 

It is now obvious that the following function is a constant in the configuration space 
of the N-particle system: 

I = [ 9 / A ] * + ( a ~ ) - ~ [ V ( d A / d 7 ) - A ( d q \ I d ~ ) ] ~  (26) 

where zI'= a q ,  + b q 2  and a and b are arbitrary constants independent of T. The 
invariance of I can be checked by substituting (23) and (24) into (26) to obtain 
I = a 2 +  b2.  The above expression is the configuration space Ermakov invariant and 
(6), (26) and (15) define a multidimensional Ermakov system. 

In the one-dimensional case where d r  = dx, A = A(x)  and 9 = " ( x )  the quantum 
expansion coefficient given by (16) or (21) reduces to unity. Therefore (6), (26) and 
(15) reduce to (l'), (2') and (3') respectively, thus proving that the multidimensional 
Ermakov system contains the one-dimensional system as a special case as we would 
expect. In § 4 we shall consider a more interesting application of the above theory to 
the case of planar channelling systems. 

Before proceeding to  this case, however, the following points should be mentioned. 
(i) The usual configuration space representation of the wavefunctions is obtained 

from the ray path wavefunctions given by (23) and (24) by simply inverting the mapping 
relations X = X ( X o ,  7) to obtain X o  = X o ( X ,  T )  and substituting the result into 'u(Xo,  T )  

to obtain W ( X ) .  Alternatively we can solve (15)-(21) explicitly for K and 7 as functions 
of X and substitute the results into (23) and (24) to obtain V l ( X )  and q 2 ( X ) .  This 
method will be demonstrated in § 4. 

(ii) The classical limit of the theory is obtained by evaluating the amplitude function 
A ( X )  at the minimum point of the Lagrangian density potential function of (15). The 
method is described in Lee (1982a). The result is that the quantum ray equation (18) 
reduces to the usual N-particle classical ray equation and the wavefunctions reduce 
to N-particle WKB wavefunctions with the Ermakov invariant given by (26) remaining 
unchanged. 

(iii) Quantisation of the above theory is achieved by requiring the wavefunction 
to be single valued. In this way we obtain the quantisation condition 

a f ( K / A * )  d r  = 2n7r 

where n = 0, + 1 , ~ 2 ,  etc, and the integral is taken around a closed path in configuration 
space. It is interesting to note that the above expression is very similar in structure 
to the Einstein quantisation condition (Einstein 1917) and can be put into exact 
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correspondence if we identify P = ah( ~/A ' ) [dX/d7]  as a generalised configuration 
space momentum. In this case (27) assumes the Einstein form 

P. d X  = nh. i 
In a later paper we hope to study the implications of this quantisation condition in 
more detail. 

4. One-particle planar separable systems 

In the case of one-particle planar separable systems as represented by planar optical 
and particle channelling systems (Lee 1982d, b), where the eigenfunctions are only a 
function of the transverse coordinate x, the phase of the wavefunction is given by 
S / h  = 1,z +f (x ) .  The quantity l3 denotes the longitudinal wavenumber of the channel- 
ling particle. The function f (x)  is determined by substituting this expression for S(x, z )  
into the two-dimensional forms of (15)-(21) with A = A ( x )  and dT2=dx2+dz2 and 
requiring self consistency between the resulting expressions. In this way the following 
results are obtained: 

(28) K = .w + ( / , / ( a A " ) )  A 1 

S / ~ = / ~ ( Z - Z O ) T ~ A ~  A-*(x) dx (29) 

where A 0  is a constant dependent upon the initial conditions and zo is an initial z point. 
The continuum wavefunctions corresponding to (23) and (24) are therefore 

given by 

2 4 1 / 2  

I' 

q2(x ,  z )  = A(x)  sin 13(z - zo)  T cuAo 1' A-2 dx) ( 
and (15) reduces to the following equation for the amplitude function A(x) :  

d2A/dx2+ k:(~)A-cu ' i l iA-~=O ( 3 2 )  

where k: (x)  = (2m/h2)[E,  - V(x)]. E ,  is the transverse energy of the propagating 
quanta and is related to the total energy E according to E ,  = E -h21:/(2m). 

In the case of planar one-particle systems the configuration space Schrodinger 
equation given by (6) reduces to 

0 2 q + ( k ' ,  + I i ) u ' = O  (33) 
where 9 is any linear combination of V I  and V2 and V is the two-dimensional gradient 
operator operating in the x, z plane. Since the phase function is a separable function 
of x and z we may take appropriate linear combinations of Yl and q2 and write the 
planar wavefunctions in the form u'(x, 2) = @(x) exp(i13z) where @(x) is a standing 
wave solution and obeys the following one-dimensional equation: 

(34) d2@/dx2 + k: (x)@ = 0. 
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The planar ray equation obtained from (19) is given by 

z = zoT ( 13/(aAo)) 1’ A2(x)  dx (35) 

where the amplitude function is related to the two linearly independent solutions of 
(34) according to the relation 

*A=[Q:+Qi]”2. (36) 

The two linearly independent solutions Ql  and Q2 are given by 

Q,(x)  = A(x)  cos( a h o  1’ A-2 dx) 

Q2(x) = A(x)  sin( ano 1’ A-’ dx) 

(37) 

(38) 

Note that because these solutions satisfy the Wronskian relation Ql(dQZ/dx) - 
Q,(dQ,/dx) = aAo only one of these functions can satisfy the boundary conditions and 
asymptote to zero as x goes to plus or minus infinity. 

Now there are two different types of Ermakov invariants for this system correspond- 
ing to the two different types of wavefunctions given by (30), (31) and (37), (38). 
The first invariant is obtained by eliminating k:(x) between (32) and (34) and 
integrating to obtain an invariant of the form of (2‘) with Q replacing q and c = a&. 
The main feature of this particular constant of the motion is that it represents a standing 
wave invariant, being a function of the standing wave solutions (37) or (38) of (33). 
Further discussion on this standing wave invariant and its application to planar optical 
channelling can be found in Lee (1982~) .  

The second type of Ermakov invariant is the multidimensional Ermakov invariant 
and corresponds to the propagating wave solutions of (33) given by the expressions 
(30) and (31). These propagating solutions correspond to waves travelling in the +x 
or - x  directions as represented by the + and - signs in (30) and (31) corresponding 
to the + and - ray paths given by (35). As shown in the appendix, these + and - 
ray paths are just the paths of constructive interference in the total wave fields of the 
+ and - propagating waves. An expression for the propagating wave Ermakov invariant 
may be obtained from (261, (28) and (35) and the Cartesian metric interval expression 
dT2 = dx2+dz2.  The result is 

Ip= ( P / A ) 2  + (.4”/ cu)’(A/ ~ ) ~ [ d ( V / A ) / d x ] *  (39) 

where q ( x ,  z )  is any linear combination of propagating wavefunctions satisfying (33) 
and d ldx  = a/ax + (dz/dx)a/dz. The corresponding expression for the standing wave 
Ermakov invariant is given by 

I,= (@/A)’+ (a . lo ) - ’A‘~d(~/A) /dxI2 .  (40) 

The main difference between these two expressions lies in the presence of the expansion 
coefficient in the propagating wave case. This is just what we would expect since 
propagating waves correspond to bundles of propagating quantum ray paths which 
expand due to diffraction effects. 

A physical interpretation of these invariants is suggested by expressing the amplitude 
function in terms of the gradient of the ray path function according to (35) and 
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substituting the result into (39) and (40) to obtain 

I ;  = 9’(dz/dx){(dx/dz)’+ I;’[l + (dz/dx)’]-’[d/dx ln(u’(dx/dz)’”’)]’} 

I,* = @’(dz/dx)((dx/dz)*+ I;*[d/dx l n ( @ ( d ~ / d z ) ” * ) ] ~ )  

(41) 

(42) 

where Ip” = T(aiio/13)Ip and I,* = T(aAo / l3 ) I s .  Hence the Ermakov invariants have 
the meaning of differential conservation laws relating the gradient properties of the 
paths of constructive interference to properties of the channelling wavefunctions. In 
this sense they can be interpreted as wave-particle duality invariants and used as 
auxiliary boundary conditions when determining wave and ray properties of optical 
and particle channelling systems. 

This idea can be extended to more complicated geometries than the simple planar 
system considered in this section. In Lee (1982b) we derived the ray path equations 
and Ermakov invariants for an optical fibre system. In 0 5 a similar procedure will be 
adopted to derive the electron ray paths and Ermakov invariants for the hydrogen atom. 

5. The hydrogen atom as a quantum Ermakov system 

In the case of one-particle systems the form of equations (15)-(21) remains unchanged 
but the arc length element reduces to dT2 = dx2+ dy2+dz2.  The resulting theory was 
discussed in Lee (1982a). The aim here is to apply this theory to the case of the 
hydrogen atom and derive the corresponding Ermakov invariants and electron ray 
path equations. 

For the hydrogen atom it is easily shown by an application of the three-space form 
of (15)-(21) that for a separable amplitude function of the form Alk,(r, 0)  = 
Mlk(r)N/,(0) and a separable phase function of the form h-’s/k,(r, e, 4 )  = 
+m/k( r )  * Q,( 0)  +j+ the nonlinear amplitude equation (15) separates into the following 
radial and angular Milne type equations: 

d2M/k/dp2+(2/p)  dMlk/dp++lkMlk-p-4M;k3 = o  (43) 

(1 - v’) dZNl,/dv2 - 2 v dNl,/d v + p,N, - E ~ , Y ~ , N ; ~  = 0 (44) 

a/k = -1 + ( 2 k / p )  - I (  I +  1)/p2 

yI, =[r(i+j+ i ) / r ( i - j +  1)]/(1- v 2 ) =  &,,/(I - .’). 

where 

p/, = I (  I + 1) - j 2 /  ( 1 - v’) 

In these expressions r denotes the gamma function, I is the angular momentum 
quantum number, k is the energy quantum number and j is the magnetic quantum 
number. Also v =cos(0) and p = rZ/ (ka , )  where Z is the nuclear charge and a, is 
the radius of the first Bohr orbit. 

It is easily verified that Mlk = (R:k + T:k )’’* where Rlk and T/k are the two linearly 
independent solutions of the radial Schrodinger equation, while NI, = ( P t  + 0;)’” 
where Pi, and QI, are the two linearly independent associated Legendre functions. 
Now since Rlk, T / k  and Plk, Q/k satisfy the Wronskian relations 

it is readily apparent that Rlk *iT/k = Mlk exp(*imlk) and Pi, f ioI, = Nl, exp(*inl,) 
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where the radial and angular phase functions are given by 

The simplest method for obtaining the orbit equations is now to utilise the fact 
that for separable systems the solutions of the general quantum ray equations are 
given by the ratios of the derivatives of the separable phase functions. This was proved 
in Lee (1982a). Employing this method we obtain the following exact equations for 
the electron ray paths in the hydrogen atom: 

[ @  M f k  ( p )  d p  = (-ly[r(l- j +  l)/r(l + j +  l)] 5 ”  N i  ( V )  dv (49) 

4 = 4o + j(-l)’[r( / - j +  l)/r( 1 + j +  l)] [ N t  ( v)/( 1 - v2)] dv. (50)  

From the above expressions it can be seen that the j = 0 states correspond to planar 
orbits. 

In the classical limit, corresponding to the minimum points of the Lagrangian 
density potential functions of the radial and angular Milne equations, the ray equations 
reduce to the elliptical orbits of the old quantum theory. These elliptical orbits are 
given by p = I (  I + 1)/{ k + [( k 2  - I (  1 + l))]’” sin( 6 - eo)} and are obtained from the 
present theory by neglecting the second derivative terms in (43) and (44). 

In order to obtain some idea of how wave aspects affect the orbit it is interesting 
to look at the next semiclassical approximation. This is obtained by taking the classical 
limit of the radial Milne equation and the exact solution of the angular Milne equation. 
The resulting orbit or constructive interference path is given by 

5 ”  

k + ( k 2 -  / ( /+ 1))1’2 sin 

where C, = ( l ( /+ l ) )”*( - l )T( / - - j+  l ) / r ( l + j +  1). Hence the elliptical orbit of the 
old quantum theory is modified by the addition of wave-like aberrations to the 0 
dependence of the orbit. For j not equal to 0 this aberrated elliptical orbit rotates in 
the q5 direction according to (50). 

The Ermakov invariants for the hydrogen atom are obtained from this theory by 
making use of (43) and (44) and the corresponding radial and angular Schrodinger 
equations given by 

d2R1k/dp2f(2/p) dRik/dP+ff&k=O (51) 

( 1 - v 2 )  d Pil / d v2 - 2 v dPil / d v + pi,Pil = 0. (52) 
The radial Ermakov invariant is obtained by eliminating ff1k between (43) and (51) 
and integrating the result to find 

I l k  = (Rik/Mik)2+p4[Mik(dRik/dIL)-Rik(dMik/dIL*.)]2. (53) 

Similarly, the angular Ermakov invariant is obtained by eliminating pi, between (44) 
and (52) and integrating the result to find 

Jr, = (pi,/NiI)*+ ~ij~[h‘ i~(dP, , /dv)  - P i l ( d ~ i J / d ~ ) ] 2 .  (54) 
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The set of equations (43),  (51) and (53) defines the radial Ermakov system of the 
hydrogen atom while the set of equations (44), (52) and (54) defines the corresponding 
angular Ermakov system. 

The Ermakov invariants given by (53) and (54) have been expressed in terms of 
the functions R l k ( p )  and P,,(v) and not in terms of linear combinations of RIk  and T[k 
or  P,, and Q!,. The reason for this is that in the case of the hydrogen atom the second 
linearly independent solutions of the radial and angular Schrodinger equations are in 
general unbounded functions and therefore d o  not lend themselves to  a probability 
interpretation. It is for this reason that no use is made of these functions in the usual 
wave mechanical treatment of the hydrogen atom. However, in the present theory 
these unbounded solutions have been given a physical interpretation because the ray 
equations given by (49) and (50) depend on both the radial and angular probability 
functions R f k  and P i  and the corresponding unbounded functions Tfk  and Qi. The 
Ermakov invariants (53)  and (54) then have the meaning of duality invariants in the 
sense that they involve radial and angular probability amplitudes coupled to radial 
and angular electron ray path functions M[k and N[,. 

Finally it should be mentioned that although we have implicitly employed 
Schrodinger’s method of quantisation for obtaining the integer values of 1, k and j this 
is not strictly necessary. An alternative and equivalent procedure is to apply Milne’s 
method to  the radial, angular and azimuthal phase functions. The resulting quantisation 
conditions then assume forms analogous to the quantisation conditions of the old 
quantum theory. However, these Milne quantisation conditions are exact, because 
instead of employing classical radial and angular momentum functions they employ 
local radial and angular momentum functions defined in terms of Milne amplitudes. 

6. Conclusions 

In this paper we have developed a representation of time independent quantum 
mechanics as a multidimensional Ermakov system. The theory is applicable to both 
separable and non-separable quantum systems, the separability of the system being 
determined by the separability of the N-particle wavefunction in configuration space. 
The  mathematical representation of the theory consists of a 3N-dimensional nonlinear 
wave equation (equation (15)) coupled to a set of 3 N  coupled generalised ray equations 
(equation (18)). Quantisation of the theory is achieved by means of a configuration 
space path integral condition (equation (27)). An interesting feature of the theory is 
the existence of a new exact configuration space invariant (equation (26)) which has 
the form of a generalised Ermakov invariant. 

In one dimension we showed that this new configuration space invariant reduces 
to the well known Ermakov-Lewis invariant. Two applications of the theory were 
then given. In the first case a new exact invariant was obtained for planar optical and 
particle channelling systems. It was also shown here that the quantum ray paths in 
the system corresponded exactly to the paths of constructive interference in the total 
channelling wave field. In the second case we obtained the Ermakov invariants and 
electron ray path equations for the hydrogen atom. As in the channelling case, the 
Ermakov invariants were found to have the meaning of duality invariants in the sense 
of bootstrapping properties relating to the wave and particle aspects of the quantum 
system. In a later paper it is hoped to  extend this theory to  the case of time dependent 
systems. 
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Appendix. Quantum rays as constructive interference paths 

The total planar channelling wave field in the x, z plane is given by 

Wx,  z )  = E  a ( k , , P ( k , , ,  x) exp(i4(z-zo)) 
n 

where a ( k , , )  is the probability amplitude for the excitation of the channel mode 
a( k,,, x) and k:n = k: (x )  + ( 2 m / h 2 )  V ( x ) .  The excitation amplitude is related to the 
initial wavefunction at the entrance face of the channel according to the expression 

+oc 

a ( k , , )  = 1 a n ( x ) T ( x ,  20)  dx. ( '42)  
-oc 

The mode functions obey equation (34) with the subscript n added to 0. 
O n ( x )  is a standing wave and is therefore given by the sum of a wave travelling in 

the +x direction and a wave travelling in the -x  direction as shown by (37) and (38). 
Therefore "(x, 2) =i(T+(x ,  z )+T-(x ,  z ) )  where P+ and 9- correspond to waves 
travelling in the +x and --x directions respectively. It follows that 

T+-(x, z )  =c a ( k , , ) A ,  exp(iS+-lh) ('43) 
n 

where the phase function S+- is given by (29). 

summation formula 
We now convert the previous summation into an integral by means of the Poisson 

In this case f n  is given by 

Equation (A3) may now be written in the form 

q+..(x, 2) =I exp(-iv.rr)I,(x, z )  
Y 

where I v ( x ,  z )  is a phase integral given by 
r 

Z,(x,z)= a ( k , ( s - $ ) ) A ( & - i )  exp(iR+-)de. J 
The phase function a+- is given by 

a+- = 2 W E  + I,( E )  ( z - zo) * (Y A,, A-2( x, E - 4) dx. ix 
To obtain the paths of constluctive interference we apply the method of stationary 
phase to the integral given by (A7). The paths of constructive interference are therefore 
given by 

aa+-/a& = 0. (A91 
From (A8) and (A9) we have 

2 ~ v + ( d l 3 / a ~ ) ( z - 2 0 ) *  ( a ( a A , A - 2 ) / d E )  dx=O. (A10) 5' 
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Now from (32) we have 

a(aAoA-2)/a& = - 1 3  d13/a&(A2/aAO). (A1 1) 

Substituting this expression into (A10) we obtain the following expression for the 
constructive interference paths: 

where z O v ( & )  = zO-2rrv/(al3/as) and v is an integer. The quantity D=2rr / (aI3/a&) 
gives the periodicity of the ray in the channel. The transverse reflection point x is 
then given by 

a ~ / a / ~ = [ 2 I ~ / ( r r a A ~ ) ]  A’(&, x) dx, I’ 
The difference between x and the x value of the classical turning point gives the x 
direction Goos-Hanchen shift. The corresponding longitudinal Goos-Hanchen shift 
is given by the difference between the z value corresponding to x and the z value of 
the classical turning point. 

Equation (A12) is of exactly the same form as (35). Hence, at least in the 
channelling case, quantum ray paths are equivalent to paths of constructive interference 
in the total wave field of the channelling particle. Since classical rays are WKB 

approximants to quantum rays one reason for the success of the classical theory of 
channelling is now apparent. Classical channelling theory is just a quasi-particle 
approximation to the exact wave mechanical theory. The quasi-particle in this case is 
just a little lump of probability following the quantum trajectory of the channelling 
particle. 
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